Introduction to Transformer Models for NLP Using BERT, GPT, and More to Solve Modern Natural Language Processing Tasks

磁链地址复制复制磁链成功
磁链详情
文件数目:999个文件
文件大小:3.78 GB
收录时间:2025-08-02
访问次数:1
相关内容:IntroductionTransformerModelsUsingBERTMoreSolveModernNaturalLanguageProcessingTasks
文件meta
  • Lesson 09 Further Applications of BERT + GPT/002. 9.1 Siamese BERT-networks for semantic searching.mp4
    174.23 MB
  • Lesson 06 Hands-on BERT/003. 6.2 BERT for sequence classification.mp4
    171.65 MB
  • Lesson 12 The Vision Transformer/003. 12.2 Fine-tuning an image captioning system.mp4
    148.69 MB
  • Lesson 08 Hands-on GPT/003. 8.2 GPT for code dictation.mp4
    118.73 MB
  • Lesson 06 Hands-on BERT/005. 6.4 BERT for questionanswering.mp4
    106.59 MB
  • Lesson 09 Further Applications of BERT + GPT/003. 9.2 Teaching GPT multiple tasks at once with prompt engineering.mp4
    99.74 MB
  • Lesson 04 Natural Language Understanding with BERT/003. 4.2 Wordpiece tokenization.mp4
    96.55 MB
  • Lesson 07 Natural Language Generation with GPT/003. 7.2 Masked multi-headed attention.mp4
    90.35 MB
  • Lesson 06 Hands-on BERT/004. 6.3 BERT for token classification.mp4
    89.58 MB
  • Lesson 11 Hands-on T5/003. 11.2 Using T5 for abstractive summarization.mp4
    83.99 MB
  • Lesson 13 Deploying Transformer Models/003. 13.2 Sharing our models on HuggingFace.mp4
    82.44 MB
  • Lesson 04 Natural Language Understanding with BERT/002. 4.1 Introduction to BERT.mp4
    81.43 MB
  • Lesson 02 How Transformers Use Attention to Process Text/003. 2.2 Scaled dot product attention.mp4
    81.32 MB
  • Lesson 02 How Transformers Use Attention to Process Text/004. 2.3 Multi-headed attention.mp4
    75.47 MB
  • Lesson 08 Hands-on GPT/002. 8.1 GPT for style completion.mp4
    72.21 MB
  • Lesson 07 Natural Language Generation with GPT/002. 7.1 Introduction to the GPT family.mp4
    70.31 MB
  • Lesson 11 Hands-on T5/002. 11.1 Off the shelf results with T5.mp4
    69.94 MB
  • Lesson 07 Natural Language Generation with GPT/005. 7.4 Few-shot learning.mp4
    66.34 MB
  • z.oreilly-transformers-video-series-main/data/toxic.csv
    65.62 MB
  • Lesson 04 Natural Language Understanding with BERT/004. 4.3 The many embeddings of BERT.mp4
    60.64 MB
  • Lesson 13 Deploying Transformer Models/004. 13.3 Deploying a fine-tuned BERT model using FastAPI.mp4
    57.45 MB
  • Lesson 05 Pre-training and Fine-tuning BERT/004. 5.3 Fine-tuning BERT to solve NLP tasks.mp4
    56.48 MB
  • Lesson 12 The Vision Transformer/002. 12.1 Introduction to the Vision Transformer (ViT).mp4
    54.24 MB
  • Lesson 13 Deploying Transformer Models/002. 13.1 Introduction to MLOps.mp4
    53.41 MB
  • Lesson 05 Pre-training and Fine-tuning BERT/002. 5.1 The Masked Language Modeling Task.mp4
    51.48 MB
  • Lesson 06 Hands-on BERT/002. 6.1 Flavors of BERT.mp4
    48.29 MB
  • Lesson 03 Transfer Learning/002. 3.1 Introduction to Transfer Learning.mp4
    47.27 MB
  • Lesson 03 Transfer Learning/003. 3.2 Introduction to PyTorch.mp4
    46.55 MB
  • Lesson 05 Pre-training and Fine-tuning BERT/003. 5.2 The Next Sentence Prediction Task.mp4
    46.07 MB
  • Lesson 07 Natural Language Generation with GPT/004. 7.3 Pre-training GPT.mp4
    37.08 MB
  • z.oreilly-transformers-video-series-main/notebooks/12 Vision_transformer.ipynb
    31.81 MB
  • z.oreilly-transformers-video-series-main/notebooks/.ipynb_checkpoints/12 Vision_transformer-checkpoint.ipynb
    31.81 MB
  • Lesson 01 Introduction to Attention and Language Models/002. 1.1 A brief history of NLP.mp4
    29.51 MB
  • Lesson 01 Introduction to Attention and Language Models/003. 1.2 Paying attention with attention.mp4
    26.58 MB
  • Lesson 10 T5 - Back to Basics/002. 10.1 Encoders and decoders welcome T5 s architecture.mp4
    24.46 MB
  • Lesson 01 Introduction to Attention and Language Models/005. 1.4 How language models look at text.mp4
    24.25 MB
  • z.oreilly-transformers-video-series-main/data/qa.csv
    23.87 MB
  • Introduction/001. Introduction to Transformer Models for NLP Introduction.mp4
    21.53 MB
  • Lesson 01 Introduction to Attention and Language Models/004. 1.3 Encoder-decoder architectures.mp4
    20.72 MB
  • Lesson 03 Transfer Learning/004. 3.3 Fine-tuning transformers with PyTorch.mp4
    18.86 MB
  • Lesson 10 T5 - Back to Basics/003. 10.2 Cross-attention.mp4
    18.25 MB
  • z.oreilly-transformers-video-series-main/data/reviews.csv
    13.2 MB
  • Summary/001. Introduction to Transformer Models for NLP Summary.mp4
    11.73 MB
  • Lesson 02 How Transformers Use Attention to Process Text/002. 2.1 Introduction to transformers.mp4
    8.34 MB
  • z.oreilly-transformers-video-series-main/data/rocks.jpg
    7.38 MB
  • z.oreilly-transformers-video-series-main/notebooks/2 Transformers.ipynb
    7.37 MB
  • z.oreilly-transformers-video-series-main/notebooks/.ipynb_checkpoints/2 Transformers-checkpoint.ipynb
    7.37 MB
  • Lesson 02 How Transformers Use Attention to Process Text/001. Topics.mp4
    7.33 MB
  • Lesson 01 Introduction to Attention and Language Models/001. Topics.mp4
    5.78 MB
  • Lesson 07 Natural Language Generation with GPT/001. Topics.mp4
    5.73 MB
©2018 ciligou.app 磁力狗 v2.0
使用必读|联系我们|资源导航|种子提交